Paper No. AIAA-2001-4717

ABSTRACT
AN INTRODUCTION TO THE GILGAMESH PIM ARCHITECTURE

Thomas Sterling and Larry Bergman
Jet Propulsion Laboratory
Pasadena, California

Objective

Throughout the history of computer implementation,
the technologies employed for logic to build ALUs and
the technologies employed to realize high speed and
high-density storage for main memory have been
disparate, requiring different fabrication techniques.
This was certainly true at the beginning of the era of
electronic digital computers where logic was
constructed from vacuum tubes and main memory was
produced by wired arrays of magnetic cores. But it is
also true with today’s conventional computing systems.
Yes, both logic and memory are now fabricated with
semiconductors. But the fabrication processes are quite
different as they are optimized for very different
functionality. CMOS logic pushes speed of active
components while DRAM storage maximizes density of
passive capacitive bit cells. As a consequence of this
technology disparity between the means of achieving
distinct capabilities of memory and logic, computer
architecture has been constrained by the separation of
logical units and main memory units. The von Neumann
bottleneck is the communication’s channel choke point
between CPUs and main memory resulting from the
separation imposed by these distinct device types.
Much of modern microprocessor architecture is driven
by the resulting data transfer throughput and latency of
access due to this separation as well as the very
different clock speeds involved. More subtle but of
equal importance is the limitations imposed on the
diversity of possible structures that might be explored
and achieved were it feasible to bridge this gap and
intertwine memory and logic. An entire class of
computer structure design space has been precluded
because of this technological Content
addressable memories, cellular automata, systolic
arrays, neural networks, and adaptive computing
structures have all been limited in their practicality and
application because of the isolation of DRAM cells

barrier.

Release A: "Copyright © 2001 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved.”

from CMOS logic. And without the means of
embedding logic in memory, many other structures not
yet conceived will never be investigated let alone
practically applied to reakworld problems.

Several years ago, semiconductor device manufacturers
developed a new generation of process and established
fabrication lines that allowed for the first time the
design and implementation of single chip components
integrating CMOS logic with DRAM cells. The
technology barrier between logic and memory was
eliminated. For the initial processes, some compromises
were necessary: device density and logic speeds were
not as high as the best segregated technology wafers of
the time. Gate switching rates were approximately a
factor of 2 or more slower. But many other advantages
were incurred by this breakthrough in manufacturing
processes. Since then, second generation lines have
been installed with the speed-density disparity
shrinking significantly. An entirely new digital
component design space has been enabled. Two classes
of structures made possible by the merger of logic and
memory are System On a Chip (SOC) and Processing
In Memory (PIM). SOC is a direct porting of classical
system configurations including processor core, L1 and
L2 caches, memory and /O busses, and DRAM main
memory on to a single chip, thus exploiting a number of
advantages incurred through these new fabrication
processes. PIM extends the design space much farther
by closely associating the logic with the memory
interface to realize innovative structures never
previously possible and thus exposing entirely new
opportunities for computer architecture. It is concepts
of this second class of computing organization that is
the focus of the work conducted under the Gilgamesh
project and described in this paper.

The ability to co-locate and integrate CMOS logic and
DRAM cell arrays on the same die provides the

potential for an unprecedented degree of coupling
between these two historically segregated digital
devices. A number of advantages compared to
conventional practices are implied by this new strategy
to devising digital structures. To what degree they are
exploited depends on the specific architecture devised
and the operational execution model employed.

Memory Bandwidth

A memory access operation to a DRAM cellblock
acquires an entire row of 1K or more bits in a single
cycle. Ordinarily, only a small number of the bits (in
the worst case, only one) are used per access in
conventional systems as one or a few are selected from
the contents of the row buffer to be deposited at the
memory chip’s output pins. PIM positions logic directly
adjacent to the row buffer exposing the entire contents
of an acquired memory row. PIM also permits the
partitioning of the chip’s memory contents in to
multiple separate memory blocks, each operating
independently. Although smaller in capacity than the
entire chip’s storage contents, each of these blocks has
the same row length, thus increasing the internal peak
memory bandwidth proportional to the number of
memory blocks. Employing today’s fabrication
processes, a typical PIM chip could deliver a peak on-
chip memory bandwidth on the order of 100 (bps or
more. On moderate scale array of MIND chips can
exceed one Tera bytes per second bandwidth.

Access Latency

The close proximity of the PIM logic to the cell block
memory row buffers permits short transit times of the
acquired data to the processing ALU. Unlike
conventional system architectures, there need not be
multiple levels of memory hierarchy comprising one or
more caches between the processor and memory in
combination with the cache control logic delays. Nor is
there the multiple stages of communication required
between each level and the resulting propagation
delays. While delays may vary widely, the degree of
improvement can be a factor of two or more. Additional
delays incurred due to contention for shared
communication channels are also avoided since such
accesses are local to a specific chip and do not require
system level resources.

Efficiency in the Presence of Low Locality

Most modern memory systems supporting high-speed
microprocessors employ a hierarchy of SRAM caches
that rely on temporal and spatial locality of data access

2

to operate efficiently. Temporal locality is the property
of data usage that reflects the tendency for multiple
references to the same word within a narrow time
frame. While many classes of applications work well
within this framework, a number of important types of
algorithms exhibit low or no temporal locality in the
short term making poor use of cache resources and
resulting in low processor efficiency. Among such
cache unfriendly operations include the manipulation of
irregular data structures, pointer chasing, parallel
prefix, and gather scatter. PIM makes it possible to
perform low temporal locality operations directly in the
memory without experiencing the long transit times or
cache disruption. Such data intensive functions can be
performed in place without any data movement off chip
and performed simultaneously across an array of PIM
chips, yielding very high efficiency with respect to
conventional systems undertaking equivalent tasks.

Low Gate Count Processors

Within a multi-chip PIM structure, performance is
dominated by effective memory bandwidth and not
ALU utilization, as is the case with conventional
microprocessors. The design considerations for PIM
processors can differ greatly from those of typical
processors emphasizing availability to servicing data
from memory rather than high floating-point
throughput. In contrast to current trends in processor
design, PIM processors can be implemented with a
relatively small gate count. Since they operate directly
on data from their immediate memory, data caches are
of less importance and may be eliminated entirely in
some cases. Under certain conditions, execution control
can be simplified as well. As a result, PIM processors
may be implemented in a few hundred thousand devices
rather than many millions. This provides simplicity of
design for rapid development and high confidence as
well as contributing to other features discussed below.

Low Power Consumption

A major advantage of the PIM concept is its excellent
power consumption efficiency. This is a consequence of
several aspects of PIM structure and operation that
distinguishes it from conventional processor design
practices. One important factor is reduced use of
external chip input and output drivers. Data transfers
through IC pins is a major source of power
consumption for ordinary systems, especially for high
speed I/O. Driving transmission lines and buses can
consume a significant portion of a systems total power
budget. But PIM performs many of a system’s

American Institute of Aeronautics and Astronautics

operations on chip, avoiding the necessity of moving
the data to the caches and registers of some remote
processor and therefore eliminating the pin driver usage
for those operations. Another improvement in power
consumption is derived from the reduction in gate count
for the processors. Historically, the trend has been
reduced efficiency per transistor with respect to
performance. As transistor count has increased, the
concomitant performance gain has not been
proportional and power consumption has exceeded a
hundred watts for many processors. By reducing the
number of devices per processor by an order of
magnitude, the amount of power consumption per
operation performed is greatly reduced as well. The
reduction or elimination of caches is one source of such
improvement. Today, caches can cover as much as
three quarters of a microprocessor chip’s area and
consume considerable power. PIM low dependence on
cache structures diminishes its power budget
substantially. Redundant memory accesses are also a
contributor to power consumption. Because
conventional remote processors rarely acquire the data
contents of an entire memory block row (some new
memory chips are improving this aspect of system
operation), multiple read access cycles to the same row
are often required. PIM memory exposes all row data to
their local processors, permitting a single access cycle
to suffice and reducing the total power consumed to
affect the equivalent data availability to processing
logic.

High Availability

PIM itself is not intrinsically fault tolerant. But PIM
exhibits a number of properties that are conducive to
realizing high availability architectures. The multr
nodal organization of a PIM chip provides a natural
boundary of repetitive structure that can be exploited
for reliability. Since each node is capable of carry out a
computation independently, it is able to take on work
that was to be performed by a failed node on the same
chip. The overall performance of the chip is reduced but
its basic functionality is retained in the presence of
faults. In this mode of operation, high availability is
achieved through graceful degradation. Faults may be
transient such as single even upsets or permanent such
as hard faults. PIM allows one node to diagnose
another, and if the failure mode is ephemeral to correct
the error and bring the faulty node back online. If the
failure is a hard fault, then the node in question can be
isolated from the remaining chip units by the other
nodes, permitting continued operation of the chip.
Many other issues remain before true nonstop

3

computation can be realized. But PIM clearly is
beneficial to accomplishing this goal.

In spite of these attributes, Processor-in-Memory
technology has been slow to migrate in to commercial
computing products. With the exception of limited
penetration in the stand-alone embedded computing
market (e.g. Mitsubishi M32R/S) and research into data
streaming accelerators (e.g. UC Berkeley IRAM), PIMs
potential has gone largely untapped. There are multiple
factors contributing to this lethargy in exploiting the
potential opportunities. One of course, is that such
usage is outside the scope of common system practices
and therefore must compete with the inertia of an
installed base of hardware and software products
addressing similar user application base. But PIM
architecture, while enticing, has proven inadequate to
the promise and challenges of realizing effective
general PIM-based computing. In spite of ten years or
more of development, PIM has not significantly
penetrated the high-end market. The reasons relate to
the limited generality of extant chips, the challenge of

integrating them within otherwise conventional
systems, and the inadequacy of current programming
methodologies as well as resource management

techniques. The Gilgamesh project is developing the
MIND architecture, an advanced PIM-based scalable
building block that addresses many of these challenges
to a significant degree.

Gilgamesh System Architecture Overview

The Gilgamesh architecture is developed in the context
of the new structural and operational opportunities
made possible by PIM technology. It is designed to
support high performance computing both for
spaceborne platforms and ground based
supercomputers. The unique properties of PIM allows
new structures and capabilities within memory devices
previously impossible. Gilgamesh extends PIM
computing from basic physical level to virtual level
naming and addresses of both data and tasks. It
provides hardware support for message driven (parcel)
computation and multithreaded control of local
execution. The architecture is developed to provide a
basis for fault tolerance support and real time
processing. It is intended to operate at low power
compared to conventional systems while provide great
scalability to meet many different system requirements.

Three Primary Levels

The Gilgamesh system architecture exhibits a
hierarchical structure of functional elements and their

American Institute of Aeronautics and Astronautics

interconnection. Different system implementations may
vary dramatically in their actual structure depending on
scale, functionality, and relationship to other elements
of the global system in which they are embedded.
Nonetheless, all Gilgamesh systems may be devised
within a three-level framework as described below.

System Level Organization
The top level of the Gilgamesh system architecture

is defined in terms of the number of MIND
modules employed, their interconnect topology and
network components, and the external devices
attached to it. In principle, a Gilgamesh may be as
small as a single MIND chip or as large as a three-
dimensional mesh incorporating thousands of such
chips. At this top level, the integrated MIND
modules may comprise a standalone system or they
may be part of a larger system with external
microprocessors, one or more levels of cache
supporting these processors, and mass storage such
as disks for persistent backing store. At this level, a
Gilgamesh system may be a parallel embedded
processor connected to sensors and controlling
computers to further process their result data or it
may be a general purpose computer connected to
user I/O devices and external internet connect.

MIND Chip Level Subsystems
The MIND module or chip has an internal structure

that includes memory, processing, and
communication functionality. It is capable of fully
independent operation or as a cooperating element
in a highly parallel structure. The MIND module
incorporates a number of processor/memory nodes
that store the internal data and control the system
operation. It also includes shared functional units
such as floating point processing used by all of the
nodes. The MIND chip has several external
interfaces to support its integration as part of larger
systems. The parcel interface supports interaction
among the MIND modules making up a Gilgamesh
architecture. An external masterslave interface
allows the MIND module to be used under the
control of external microprocessors or so that the
MIND module can control external I/O or mass
storage devices. A streaming interface permits
direct memory access of large blocks of data at
high speed such as data from mass storage or
image sensors. Separate signal lines permit rapid
response to external conditions and the control of
external actuators.

4

MIND Node Architecture

The processor/memory node architecture all
functionality required to perform core calculations
and manage physical and logical resources. Each
node comprises a memory block of a few Mbits of
data organized in rows of 1 Kbits or more and
accessed in a single memory cycle. The node
processor architecture differs substantially from
conventional microprocessors, emphasizing
effective memory bandwidth instead of ALU
throughput. The node ALU is as wide as the row
buffer and can perform basic operations on all row
buffer data simultaneously. A wide-register bank
permits temporary storage of the contents of row
buffer. A multithreaded scheduling controller
supports the concurrent execution of multiple
separate threads, simplifying management of
resources and handling hazards. Each node
interfaces with others on the chip as well as with
external interfaces by means of a common shared
internal communications channel.

Modes of System Integration

The MIND architecture and chip design are devised to
address the requirements of a diversity of advanced
system requirements. It may contribute to a wide range

of operational contexts from simple single-chip
embedded computing tasks to large hierarchical
Petaflops-scale supercomputers and many

configurations in between. MIND chips may perform as
masters, slaves, or in peer-to-peer relationships. They
may operate alone, within a hompgenous structure
comprised uniquely of themselves, or in conjunction
with a plethora of other component types including
other technologies. They may be completely
responsible for all aspects of a computation or provide
specific optimal but narrow mechanis ms contributing to
the broader computing model supported and even
guided by other elements as well. Depending on their
role, the organization of the systems that they in part
comprise may vary. MIND is of a sufficiently general
nature that the ways in which it may be employed is
larger than it is reasonable to describe exhaustively in
this note. Some key classes of structure are briefly
discussed to suggest the manner and means of their
utility.

Single-chip embedded
The simplest system employing the MIND

component is a single chip structure in which all
responsibilities of computation and external
interface are supported by the one device. The chip

American Institute of Aeronautics and Astronautics

interfaces permit independent input and output
signals for sensors and actuators, a control bus for
managing external slaved devices such as
secondary storage and user interfaces, and a data
streaming port for rapid transfer of bulk data such
as that from real time image (CCD) sensors.
Although a single chip, a MIND device still
incorporates multiple processor-memory nodes to
provide mutual fault diagnosis, high performance
through parallel computing, bounded real-time
response, and graceful degradation in the presence
of faults.

Gilgamesh scalable

Gilgamesh is a scalable system comprising
multiple MIND chips interconnected to operate as
a single tightly coupled parallel computer without
additional processing support. The number of
MIND chips within a Gilgamesh systems can range
from a few (typically four to sixteen) that easily fit
on a small to moderate board to extremely large
systems of many thousands or even a million chips
packaged possibly in a 3-D matrix. A cubic
structure of MIND chips a meter on a side,
including cooling could sustain Petaflops scale
computation. The actual interconnect network and
topology will differ depending on Gilgamesh
system scale and time critical factors as well as
power and reliability considerations. The array of
MIND components shares a global virtual name
space for program variables and tasks that are
allocated at run time to the distributed physical
memory and processing resources. The MIND
chips interoperate through an active message
protocol called parcels that supports everything
from simple memory access requests to the remote
invocation of entire programs with efficient light-
weight transport, interpretation, and context
switching mechanisms for effective handling of a
range of parcel packet sizes. Individual processor-
memory nodes can be activated or powered-down
at run time to provide active power management
and to configure around faults.

Smart memory — slaved

MIND chips can be a critical component of larger
systems, replacing the “dumb” memory of a
conventional system with smart memories capable
of performing operations within the memory chips
themselves. Such systems still maintain the
conventional structure involving one or more
microprocessors responsible for conducting,
coordinating, and managing the computation and
overall system resources performing it. Such a

5

structure may even employ a typical cache
hierarchy for SMP or DSM operation, or support
shared memory without cache coherence. The
MIND chips replace some or all of the main
memory in such structures, providing a memory
system with logic for local operations.

In its most simple form, MIND employed as smart
memory can be used directly in place of
conventional DRAM (or advanced versions) parts.
This does not mean they would plug in to the same
slot; pin compatibility is unlikely. But the general
structure remains identical, even if the pin-outs are
modified. All MIND chips are operated directly
under the control of the host or main
microprocessors of the system. In this slaved mode,
the MIND components receive direct commands
from their host microprocessors. These may be as
simple as basic read-write requests to the memory
itself or compound atomic operations such as test-
and-set. But the set of operations that can be
performed is much larger and in slaved mode
MIND chip array can perform a wide array of such
instructions on streams of physical memory blocks.
Performing scaling functions for numeric
applications or associative operations for relational
transaction processing are two such examples, each
operation triggered by a command from the host
microprocessor but performed in parallel by the
many processor-memory nodes on the array of
MIND chips. This data parallel operational mode
can be extended to the execution of simple multk
instruction functions, invoked by the host
processor(s) and performed on local data by each
of the MIND nodes. In slaved systems, all MIND
chips, like their dumb DRAM counterparts, are
interconnected through the system memory
channel.

Smart memory — peer to peer

There are many opportunities to derive
performance benefit through the execution of data
parallel instructions or functions on single data
elements or contiguous blocks of physical memory
by means of a master-slave relationship described
above. This is the primary way by which the
majority of PIM architectures are structured and
their computations managed. However, more
sophisticated functions require access to data that
may be distributed across multiple nodes, not just
local to a particular memory block. One important
class of operations involves irregular data
structures that incorporate virtual pointers that
must be de-referenced by the MIND nodes

American Institute of Aeronautics and Astronautics

themselves identifying data values stored on other
nodes. In other cases, the result of a function
performed on one node may require an
intermediate solution to a computation performed
on another node. Under such circumstances, nore
general computations than those accomplished in a
slaved mode require a peer-to-peer relationship
among all of the MIND nodes. This could be
achieved through the common memory channel
with provision made either for the host
microprocessors to coordinate and conduct
transactions between chips or for the MIND chips
themselves to become master of the memory
channel. However, traffic congestion due to
contention for this shared communication resource
would impose a bottleneck that could severely
constrain throughput and scalability. Rather, where
peer-to-peer inter-MIND chip operation and virtual
memory references are to constitute a significant
proportion of the system behavior, a richer network
infrastructure dedicated to communications
between MIND chips is to be preferred, altering
and extending the structure beyond that of
conventional systems. The MIND architecture
supports the use of an independent memory
network and node-to-node direct cooperation for
peer-to-peer functionality. The host
microprocessors are still responsible for the overall
control of the computation and broad coordination
of the system resources. But at the finer grained
details of the system operation, in a peer-to-peer
functional relationship, the MIND nodes
themselves interoperate on behalf of but not in
direct control by their hosting microprocessors.

Smart memory — master through percolation

An innovative concept has emerged from the
HTMT project that may revolutionize the
relationship between processors and their main
memory, enabled by the potential of advanced PIM
architecture such as MIND. Traditionally, in
addition to performing the actual computations
related to an application for which the conventional
register-register microprocessor architectures are
optimized, they also are required to synchronize
the tasks making up the computation and manage
the movement of instruction, variable, and context
data to high speed local memory, usually L1 and
L2 caches. Because of latency and the classical
memory bottleneck, load store operations are not
very effective and can cause significant reduction
of processor efficiency. PIM provides a new
opportunity to significantly improve the efficiency
and scalability of shared memory MPP systems and

6

the MIND architecture is devised in part to
implement the new paradigm. Percolation is a
proposed methodology by which the control of
physical and logical components of a computation
are managed not by the main microprocessors that
are ill suited to these responsibilities but to the
main memory incorporating PIM MIND chips.
Under the percolation model the small,
inexpensive, and highly replicated MIND
processors assume the task of managing all
memory resources, accomplishing all memory
intensive functions (such as parallel prefix, or
associative update), and coordinating the execution
distributed parallel tasks. Most importantly,
percolation provides the means of migrating all
necessary data to the local high speed memory or
cache of the main microprocessors and scheduling
their use; thus relieving the hosts of all overhead
and latency intensive activities. Through
percolation, the smart memory can become the
master and the main microprocessors become the

slaves revolutionizing the architecture and
operation of future generation high performance
computers.

Interconnect

MIND modules are connected by a fabric of channels
that permit parcel message packets to be passed
between any pair of nodes within a Gilgamesh system.
The topology of the Gilgamesh interconnect may differ
depending on the system scale, usage, and
requirements. The parcel transport layer hardware
interface supports various network structure through a
programmable routing table. Each MIND module
contains multiple parcel interfaces. For example, there
may be on parcel interface for each MIND node on the
chip. Through the internal MIND module shared
communication channel, incoming parcel messages can
be rerouted to other parcel interfaces. The MIND chip
can act as a routing switch of degree equal to the
number of parcel interfaces on the chip. With four
parcel interfaces on each chip, a small four chip system
has complete interconnect. A sixteen chip hyper-cube
interconnect can be implemented with the same chip
type. Mesh and toroidal structures can be implement for
larger organizations as well. For higher bi-section
bandwidth and shorter latencies for larger systems,
external networks comprising independent switches
may be used to build more powerful networks. These
can be particularly useful when MIND chips are used in
conjunction with larger systems.

American Institute of Aeronautics and Astronautics

MIND Module Subsystems

The principle building block of the Gilgamesh systems
including the anticipated PIM enhanced main memory
subsystems of future high performance computers is the
MIND chip or module. The MIND module is designed
to serve both as a complete standalone computational
element and as a component in a synergistic
cooperation with other like modules. The subsystems
comprising the MIND module are devised to support
both its own internal functionality and its cooperative
interrelationship with other such devices. This section
provides a brief description and discussion about the
chief critical subsystems making up a MIND module.

MIND Nodes

The MIND node is the principal execution unit of the
MIND architecture. Multiple nodes are incorporated on
a single MIND chip, the exact number dictated by
fabrication technology, chip real estate, and design
considerations including the number of gates per node
processor. The node consists of the node memory
block, the node wide-word multithreaded processor,
and the connections to parcel message interface and the
MIND chip internal bus. The MIND node memory is
DRAM with the entire row buffer exposed to the node
processor. The node processor ALU and data paths are
structured to make the best usage of the high bandwidth
direct access to the memory block. A wide register bank
is integrated in to the data path. Each wide-register is
the width of the row buffer and allows temporary
buffering of the contents of the row buffer. The ALU is
also capable of working on all bits of the row buffer or
wide register within one memory access cycle time.
The node executes instruction streams called threads. A
thread employs a wide-register as its primary state
definition. A multithreaded sequencer manages multiple
threads concurrently, allowing interleaved instructions
from among the many active threads to share the same
physical execution resources, actually simplifying
handling of data and control hazards as well as
providing rapid response to real time signals. Node
memory is used to contain pages with virtual addresses
and address translation is performed among the nodes
through a distributed address mapping directory table.

Shared Function Units

While each node incorporates essentially all logic
needed to undertake any general computation, some
additional units can extend the operational capability of
the nodes while not necessarily justified for inclusion

7

within each and every node. Not every possibly
functional unit may have sufficient usage to warrant
replication on a single chip or may require too much die
area for more than one such unit to be practical on a
given chip. MIND provides the necessary logical and
physical infrastructure to permit the addition of separate
functional units that can be accessed by all of the
MIND nodes as well as through the master-slave
external interface. For the first design, three possible
such units are under consideration for incorporation:
floating point multiply, floating point addition, and
permutation network. These can be pipelined,
supporting multiple requests concurrently and have
their own dedicated access arbitration controllers.
Future designs may include additional shared functional
units.

Internal Shared Communications

The majority of node operations employ local resources
within the node, but some operational functionality is
provided through subsystems on the MIND module but
external to the specific node. The shared function units
described above are examples as are the external
interfaces to be described below. Another important
class of resource to which every node must have access
is the combined memory blocks of the other nodes on
the same MIND module. To support the sharing of
function units, control of external interfaces, and access
to chip-wide memory blocks, an internal shared
communication mechanism is incorporated as part of
every MIND module. This channel may take any one of
several possible forms but provide fast reliable access
to all needed chip resources. It is anticipated that such
shared communications within the module will employ
a split transaction protocol to decouple the
communication throughput from the natural operating
speeds of the shared elements. Depending on the
number of nodes within a module and their speeds,
either multi-drop buses or point-to-point network
topologies may be employed. But in either case,
redundancy or graceful degradation of path between
any two subunits within the module is required for fault
tolerance. The internal shared communications medium
will support its own access arbitration and error
detection mechanisms.

Master-Slave External Interface

A Gilgamesh ensemble of MIND units may operate as
an independent system or in cooperation, support, or
control of external computing elements. The MIND
chip architecture incorporates an external interface that

American Institute of Aeronautics and Astronautics

services the necessary communications, command, and
control functions for interoperability with external
computing components (not including other MIND
chips). One or a collection of MIND modules may be
slaved and responsive to the commands of one or more
external master microprocessors. This would be a
comparable relationship to that of a primary
microprocessor to its main memory chips except that
the MIND chip surrogates can also perform in situ
operations. The MIND mo dules may also perform as
master by means of this external interface controlling
external devices such as network ports and mass storage
devices or real time sensors. In this mode, it may be
used in conjunction with the streaming [/O interface
described below.

Streaming 1/0 External Interface

The external streaming interface provides a direct high
bandwidth connection between external remote devices
and the MIND memory blocks. The interface will
support full direct memory access rate of data transfer
in or out of the chip. It can be used for such input
devices as real time digital cameras or output
stereoscopic projectors at full frame rate. Using this
interface, MIND units can be used as post sensor
processors for digital signal processing tasks such as
passive sonar or radar return data. It can be used for
accepting large blocks of data from mass storage
devices or can dump data in to such devices as
holographic storage. ‘

Parcel Interface

Inter MIND chip communications is supported by the
parcel packet transport layer. Each MIND chip includes
multiple parcel interfaces to an external network
providing access to all MIND chip nodes comprising a
Gilgamesh system. Parcels have to be fast enough to
perform basic memory operations at the same rate that
conventional memory chips support memory accesses.
Therefore, the interface has to be wide enough to accept
the packets for these operations. However, parcels also
have to support variable format packets for a wide array
of more sophisticated remote operation invocation.
Thus, a combination of parallel and serial acquisition of
parcel packets are required of the interface. The parcel
interface has to be capable of interpreting basic parcel
operation types to perform the most simple instructions
without demanding full operation of the thread
scheduler. For example, a thread can read any state
within the node and generate a new parcel containing
that state to be returned to the calling MIND chip

8

without employing any higher functionality of the
MIND architecture.

Signals

External events from secondary storage devices,
sensors, command interfaces (e.g. mouse, keyboard)
and other asynchronous triggers can be communicated
directly to the MIND module through a set of signal
two-state signal pins. Such signal conditions, when
detected, can cause an active thread to be immediately
scheduled by the multithread controller or cause a new
thread to be instantiated and executed. Signal pins can
also be used to provide external voltage or current
switching to external logic, power, or actuator devices
to control their operation. The input and output signal
pins are shared among all nodes of the MIND module
and can be directly controlled by other MIND modules

through the parcel interface or by a master
microprocessor through the master-slave external
interface.

MIND Node Architecture Overview

The node of a MIND chip provides the primary storage
and operational resources of a Gilgamesh system. It
manages the DRAM main memory providing both local
and remote access to its stored data. It performs basic
operations on multiple fields of data simultaneously. It
initiates fine grain tasks, carries them out, and
completes them, interleaving operations from separate
but concurrent tasks to achieve high efficiency. The
node assimilates messages and derives new tasks from
them. The architecture of the node includes its principal
elements, the data paths interconnecting them, and the
control logic determining their behavior. This section
describes these in some detail.

Memory Block

The node memory block has at its core (no pun
intended) one or more conventional stacks of DRAM
cells arranged. The stacks are arranged by rows of
individual single bit storage cells. Each row may
typically contain on the order of 2048 such cells. The
sense amps are connected to columns of corresponding
cells across all of the rows. However, due to the extra
fine pitch of the cells, it is not possible to lay metal
output bus lines such that adjacent cells in a given row
can be read out at the same time. As a result, groups of
eight adjacent cells in a row share the same output bus
line and use it in a time multiplexed manner. There are
one eighth as many output bus lines as row cells or for

American Institute of Aeronautics and Astronautics

2048 cells per row, there are 256 output bus lines. Thus
a row, once addressed, is read in a succession of eight
256-bit groups. The output of the row sense amps is fed
directly to the row buffer, a row wide fast register that
holds the contents of the row and is available to feed it
back to the DRAM cells which is necessary because
such a read is destructive. The contents of the row
buffer, which represents all the data of the selected row,
is then available for immediate processing.

Access to the memory block is managed by the memory
controller. This simple hardware subsystem performs
two primary functions related to the allocation and
operation of the memory block. The memory controller
arbitrates among the potential sources of memory
requests. These include the MIND intra-chip
communications bus, the parcel handler, and the thread
coordinator. Access is prioritized with five levels of
priority to support both essential accesses and optimal
resource utilization. The priorities include:

1. basic

2. preferred

3. exception

4. real time

5. parcel diagnostics

Most thread requests to memory are issued with the
basic priority, which accounts for the majority of
accesses. General accesses through the MIND intra-
chip bus from other nodes are asserted with the
preferred priority as are general memory access parcel
requests. As these are shared and limited resources,
responding quickly to these requests will free them
earlier than would otherwise occur. Supervisor memory
requests and interrupt handlers are supported at the
exception priority level, which takes precedence over
the general execution accesses. To support real time
operation with bounded and predictable response time,
a high priority is provided. The real time priority level
is distinguished from those below it in that not only will
it take precedence over requests at lower priority but it
will preempt any current memory request that is being
performed, unless the actual discharge phase is taking
place. If so, that subcycle will be completed, its
contents temporarily buffered and the real time request
immediately initiated. The highest priority is parcel
diagnostics that is used to force the memory controller
to operate, even if there is a fault in part of the
hardware. This is used when the node has failed and
must be controlled externally. In this case, the memory
controller is really disabled and the signals provided by
the parcel handler.

9

The memory block itself performs some simple
compound-atomic operations on the data stored. Thus
the controller accepts as part of the request certain basic
op codes to be employed by the wide ALU during such
cycles. This allows parcels or other nodes on the MIND
chip to perform atomic synchronization primitives
without invoking threads and incurring the overhead in
space and time that that implies.

Parcel Handler

The Parcel handler is responsible for the transfer of
MIND active messages, or Parcels, between MIND
modules. Each MIND node has a local parcel handler,
although a parcel arriving at any node on a MIND chip
can be redirected to any other node on the same MIND
chip through the internal intra-chip communications
channels. This permits the on-chip parcel handlers to
perform as an intermediate router of parcels in a
potentially large network of MIND chips.

The parcel carries multiple fields of information that
influences its transport across the Gilgamesh system
between source and final destination nodes, determines
the actions to be performed at the destination MIND
node, and specifies the way in which flow control is to
be continued upon completion of the parcel task. The
basic fields comprising a standard parcel include:

1. target physical node destination

2. context id

3. destination data or object name (virtual or
physical)

4. action specifier

5. operands (values or names)

6. continuation

A separate address translation mechanism predicts the
physical node on which a virtually named destination is
anticipated to be and the parcel moves through one or
more hops through the system network to this physical
location. At this destination, the presence of the sought
after entity is verified. It is possible that the parcel will
be redirected to a new physical destination at this point,
creating a new physical address in the parcels first field
entry. Low-level parcels may deal directly with the
system’s physical elements for low level diagnostics,
initialization, and maintenance including
reconfiguration. The context id field indicates domain
of execution including physical, supervisor, or any one
of a number application name spaces, for hardware
supported security. This, in conjunction with the
destination name field, fixes the logical (and possibly
physical) data or object that the parcel is to effect. The

American Institute of Aeronautics and Astronautics

action specifier dictates that effect. It can be a basic
hardware operation performed by the parcel handler on
the node. It can be a call to a object method, function,
or system service routine that initiates a thread to be
executed, or it can contain a sequence of instructions to
be directly executed. The operands field is variable
length and self formatted possibly containing a mix of
different typed values and variable names to be de-
referenced during the course of the action to be
performed associated with the parcel. When the parcel
action terminates, there are two ways to initiate a
follow-on action.

Wide Register Bank

The MIND node processor employs a bank of registers,
each of which is as wide as the row buffer and sense
amps, perhaps a couple of thousand bits, which may be
2048 bits. Being able to repeatedly access an entire row
multiple times after the first read cycle is of tremendous
value when the cycle time ‘difference exhibited is a ratio
of an order of magnitude or more between memory and
registers.

Wide ALU

Execution Model and Mechanisms

The Gilgamesh MIND architecture supports a dynamic
adaptive resource model of execution at the fine,
medium, and coarse levels of granularity. Many of the
attributes have been touched upon in earlier sections.
The purpose of this brief closing section is to highlight
the logical dynamic functionality enabled by the
efficient hardware mechanisms of the MIND
architecture that contributes to the determination of the
allocation of tasks to execution resources both within
MIND nodes and shared across MIND nodes and chips.
Although there are many ways to manage the node
resources, Gilgamesh promotes a dynamic multilevel
multithreaded methodology that establishes a new
design space for both hardware and software.

The central premise is that unlike conventional
multimode statically scheduled systems, the work goes
where the data is, rather than always presuming a locus
of work sites and designating data partitions local to
them. Thus an action or task is to be performed on a
dense data construct, possibly multifield in structure,
and a actionspecifier is dispatched to the site of the
data. This specifier can be tiny compared to the size of

the data operated upon. Equally, the virtual data can be
distributed by a number of different algorithms and the
operation and efficiencies are still retained, whether
static or dynamic. This message driven model of
computation using parcel type of active messages
exploits a simple multithreaded intra-node instruction
issue mechanism. For persistant control state, medium
grained objects can handle complex timing and control
relationships. These points are expanded somewhat
below.

Parcel Driven Computing

Parcel dynamic structures were described in some detail
in section 4. The important idea is that parcels are an
embodiment of a remote task call and a decoupled or
split transaction method of creating remote flow
control. One consequence of active messages including
parcels is their intrinsic property of latency hiding.
Once a node has launched a parcel, it can forget about
it, using its own resources for other work. Until a
remote node assimilates such a parcel, it dedicates no
resources to it, doing so only when it has been
completely received and interpreted by the node’s
parcel handler and then only when other tasks are not
consuming these resources already. Thus a node can be
imagined as a small computing engine that holds data
and processes parcels directed to that data while
directing result parcels to other data.

Yirtual Memory

Unlike almost all other examples of experimental PIM
architectures, Gilgamesh manages a distributed but
shared virtual memory space such that all data is
viewed by all nodes within the system and all address
pointers can be translated, perhaps through a
mulitstaged procedure so that a parcel will reach the
physical location that holds the logical page of data
sought. Virtual paged data is used in this structure so
that everything within the page is accessed via physical
offset to the page header. The distributed address
translation scheme creates a distributed page table, the
entries of which are allocated to specific physical
MIND chips. Actual virtual pages may be placed
anywhere but are preferentially placed in the same chip
or collection of chips in which the respective directory
table entry resides. A new affinity model is offered that
allows virtual pages to be realigned to manage locality
with out artificially changing the logical data structures
themselves. A preparation stage of data realignment,
like a kind of gather, will be possible and overlap the

American Institute of Aeronautics and Astronautics

other computation and synchronization phases of
execution management for latency hiding.

Multithreaded Control

The basic management of the node memory block was
described with several requests for the memory block
being asserted at the same time. The multithreaded
control unit extends this class of resource management
scheme to support other resources such as basis integer
and floating point operation units, register to register
transfers and perturbations, and others. Such
asynchronous instruction issue controllers permit a
number of active threads to exists simultaneously, each
with a pending action type ready to be performed or
waiting for its previously issued instruction to be
completed. Although simple in concept, the tradeoffs
for optimality are subtle. It turns out that overall
performance increases with multithresed systems if the
processors are made snall and many more nodes are
used in order to maximize sustained memory bandwidth
which is the critical resource.

Object based computation

Decoupled control.

11
American Institute of Aeronautics and Astronautics

